Name:	Keu		
Date:	. J	Hour:	

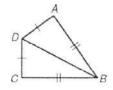
....ry - 4.6-4.7 Review

4.6: Triangle Congruence: CPCTC

Corresponding Parts of Congruent Triangles are Congruent (CPCTC) is useful in proofs. If you prove that two triangles are congruent, then you can use CPCTC as a justification for proving corresponding parts congruent.

Given: $\overline{BD} \cong \overline{CD}$, $\overline{AB} \cong \overline{CB}$

Prove: $\angle A \cong \angle C$

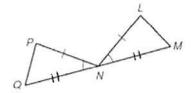


Statements	Reasons
1. $\overline{BD} \cong \overline{CD}$, $\overline{AB} \cong \overline{CB}$	1. Given
2. $\overline{DB} \cong \overline{DB}$	2. Reflexive Property of Congruence
3. △CDB ≅ △ADB	3. SSS
4. ∠A ≅ ∠C	4. CPCTC

Complete each proof.

1) Given: $\angle PNQ \cong \angle LNM$, $\overline{PN} \cong \overline{LN}$, N is the midpoint of \overline{QM}

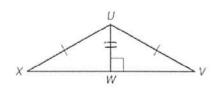
Prove: $\overline{PQ} \cong \overline{LM}$



Statements	Reasons
$1. \angle PNQ \cong \angle LNM, \ \overline{PN} \cong \overline{LN}, \ N \text{ is the midpoint of } \overline{QM}$	1. Given
2. QN ≅ MN	2. Definition of Midpoint
3. △PNQ ≅△LNM	3. SAS
4. PQ ≅ LM	4. CPCTC

2) **Given:** \triangle UXW and \triangle UVW are right \triangle s. $\overline{UX} \cong \overline{UV}$

Prove: $\angle X \cong \angle V$



Statements	Reasons	
1. \triangle UXW and \triangle UVW are right \triangle s. $\overline{UX} \cong \overline{UV}$	1. Given	
2. $\overline{UW} \cong \overline{UW}$	2. reflexive prop of ≃	
3. △XUW ≅ △VUW	3. HL	
4. ∠X ≅ ∠V	4. CPCTC	

4.7: Isosceles and Equilateral Triangles

Theorem	Examples
Isosceles Triangle Theorem If two sides of a triangle are congruent, then the angles opposite the sides are congruent.	If $\overline{RT} \equiv \overline{RS}$, then $\angle T \equiv \angle S$.
Converse of Isosceles Triangle Theorem If two angles of a triangle are congruent, then the sides opposite those angles are congruent.	If $\angle N \equiv \angle M$, then $\overline{LN} \equiv \overline{LM}$.

You can use these theorems to find angle measures in isosceles triangles.

Find $m\angle E$ in $\triangle DEF$.

$$m\angle D = m\angle E$$

Isosc. △ Thm.

$$5x^{\circ} = (3x + 14)^{\circ}$$

Substitute the given values.

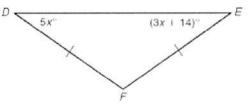
$$2x = 14$$

Subtract 3x from both sides.

$$x = 7$$

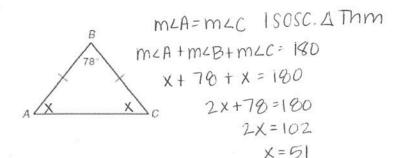
Divide both sides by 2.

Thus
$$m\angle E = 3(7) + 14 = 35^{\circ}$$
.

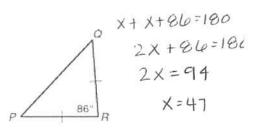


Find each angle measure.

$$3) \text{ m} \angle C = 51^{\circ}$$

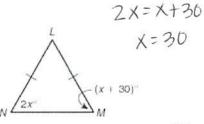


4)
$$m\angle Q = 47^{\circ}$$



$$G = G \times 10^{10}$$
 $G \times 10^{10}$
 $G \times 10^{10$

6) m
$$\angle$$
M = \bigcirc 0°



MLM=30+30 m4M = 60°

Equilateral Triangle Corollary

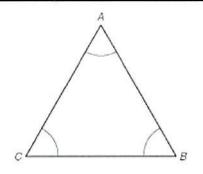
If a triangle is equilateral, then it is equiangular.

(equilateral $\triangle \rightarrow$ equiangular \triangle)

Equiangular Triangle Corollary

If a triangle is equiangular, then it is equilateral.

(equiangular $\triangle \rightarrow$ equilateral \triangle)



If $\angle A \equiv \angle B \equiv \angle C$, then $\overline{AB} \equiv \overline{BC} \equiv \overline{CA}$.

You can use these theorems to find values in equilateral triangles.

Find x in $\triangle STV$.

 $\triangle STV$ is equiangular.

 $(7x + 4)^{\circ} = 60^{\circ}$

7x = 56

x = 8

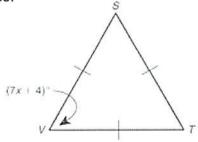
Equilateral $\triangle \rightarrow$ equiangular \triangle

The measure of each ∠ of an

equiangular \triangle is 60°.

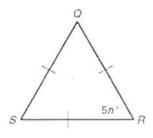
Subtract 4 from both sides.

Divide both sides by 7.

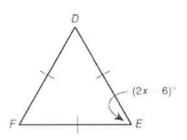


Find each value.

7)
$$n = 12$$



$$n = 12$$



9) VT = 18

$$V$$

$$S$$

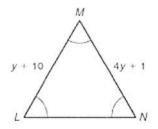
$$9r$$

$$7$$

$$5r+8=9r$$

 $8=4r$
 $2=r$
 $VT=5(2)+8$
 $VT=18$

10) MN = 13



$$Y+10 = 4Y+1$$

 $9 = 3y$
 $3 = Y$

$$MN = 4(3) + 1$$

 $MN = 12 + 1$
 $MN = 13$