Key

Term	Definition	Example
reflection	A reflection is a transformation that uses a line like a mirror to reflect an image.	Point P not on mir a
line of reflection	A line of reflection is the mirror line to reflect about. A reflection in a line m maps every point P in the plane to a point P', so	P 7
	that for each point one of the following is true: If Pis not on mitnen misther perpendicular bisector of PP' If Pis on mitnen P=P'	Point P W on m
Theorem 9.2 Reflection Theorem	A reflection is an isometry. $\triangle ABC \cong \triangle A^{+}_{A}B^{+}C^{+}$ $A \leftarrow C \rightarrow A^{+}_{A}$	Case 1: reflect about x -axis Case 2: reflect about y -axis Case 3: reflect about $y = x$ Case 4: reflect about $y = -x$

Coordinate Rules for Reflections

- 1. If (a,b) is reflected in the x-axis, its image is the point (a,-b).
- 2. If (a,b) is reflected in the y-axis, its image is the point (-a,b).
- 3. If (a,b) is reflected in the line y=x, its image is the point (b,a).
- 4. If (a,b) is reflected in the line y = -x, its image is the point (-b,-a).

- 1. The vertices of \triangle ABC are (1,2), B(3,0), and C(5,3). Graph the reflection of \triangle ABC as described.
 - a) In the line x = 2.

b) In the line y = 3

2. The endpoints of \overline{CD} are C(-2,2) and D(1,2). Reflect the segment in the line y = x. Graph the segment and its image.

$$* C^1 = (2,-2)$$
 $D' = (2,1)$

3. Reflect \overline{CD} from example 2 in the line y = -x. Graph \overline{CD} and its image.

