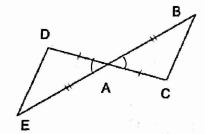
4.6 Use Congruent Triangles

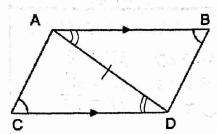
Term	Definition	Example
	Two triangles are congruent if and only if	if JABC = DEF then
Definition	their corresponding parts are congruent.	LA = LD AB = DE
of Congruent	This is also known as the Corresponding	四二年 配至町
Triangles	Parts of Congruent Triangles are Congruent	LC≅ LF AC≅ DF
(CPCTC)	Theorem.	


To show that a pair of corresponding parts of two triangles are congruent:

2. Use the definition of congruent triangles (CPCTC) to show the corresponding parts are congruent.

	What can we say about SSA and AAA?	
SSA	SSA cannot be used as a proof of congruent triangles.	
AAA	AAA cannot be used as a proof of congruent triangles. two triangles to be <u>similar</u> .	AAA only proves the

Examples:


1.

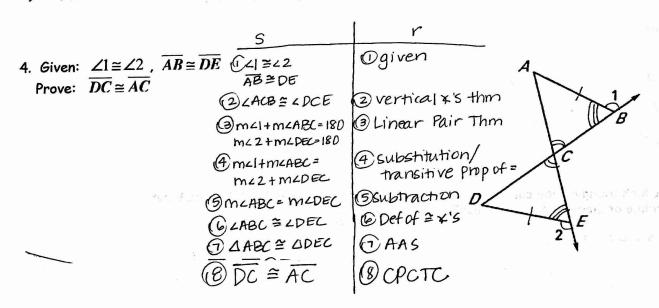
Tell which triangles you can show are congruent in order to prove the statement. What postulate or theorem would you use? $\triangle ADE \cong \triangle ACB \bowtie SAS$

Prove ∠ D≅ ∠ C.

Statements.	reasons
$ \bigcirc \overrightarrow{DA} \cong \overrightarrow{CA} $	1 Given
(2) 2010 - 20.0	2 vertical x's thm
GAND - TANCO	3 SAS
€ 20 = 2C	@CPCTC

Tell which triangles you can show are congruent in order to prove the statement. What postulate or theorem would you use? $\triangle CDA \cong \triangle BAD$ by AAS

AC = BD by the _ CPCTC


	t and prifting common	5 , 400 to 0
	A F	G B
3.	1	
	\sim	
	F D	č n

a) statements	reasons
C) OLE ZC	Ogiven & sales
AE ≅ BC ∠F≅∠G	_
2 DAEG ≅ DBCF	2 A45
3 FB ≈ GA	3 CPCTC

Tell which triangles you can show are congruent in order to prove the statement. $\triangle A = G \cong A BCF$ a)

What postulate or theorem would you use? AAS b)

Prove FB ≅ GA c)

