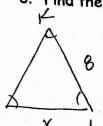
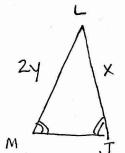

4.7 Use Isoscele:	s and Equilateral Triangles	Key
Term	Definition	Example
parts of an isosceles triangle	 Vertex Angle— angle formed by the two equal sides Legs— the two equal sides of the Δ. Base— the other two x's of the triangle Base Angles— third side of the Δ. 	leg A vertex angle leg base base C base
Theorem 4.7	If two sides of a triangle are congruent,	A) if AB = AC
Base Angles Theorem	then the angles opposite them are congruent.	then 48 = 40
Theorem 4.8	If two angles of a triangle are congruent,	A if LB = LC
Converse of Base Angles Theorem	then the sides opposite them are congruent.	then AB≅ AC
Corollary to the	If a triangle is equilateral, then it is	A if AB = AC = BC
Base Angles	equiangular.	Then LAZLBOLC
Theorem		$B \angle \downarrow c$
Corollary to the	If a triangle is equiangular, then it is	A if CAZCBECC
Converse of Base	equilateral.	then $\overrightarrow{AB} \cong \overrightarrow{AC} \cong \overrightarrow{BC}$

Examples:

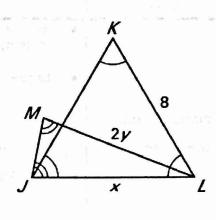
Angles Theorem


1. In $\triangle FGH$, $\overline{FH}\cong \overline{GH}$. Name two congruent angles. LF ≅ LG

2. Find the measures of $\angle R$, $\angle S$, and $\angle T$.

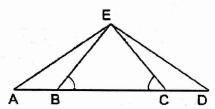

APST is equilateral so LR = LS = LT Therefore LR, LS, LT = 60°

3. Find the values of x and y in the diagram.


OJKL is equilateral so x=8

AMLJ is isosceles

24= 4 X



3.

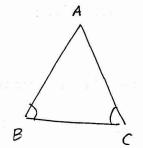
Copy and complete the statement.

If
$$\overline{HG} \cong \overline{HK}$$
, then $\angle ? \cong \angle ?$.

4.

Use the diagram to complete the statement.

If $\angle EBC \cong \angle ECB$, then ? \cong ?


if the base angles of a 1 are equal, then the 1 is isosceles

(IIIII) (IIIVrite II proof of the Converse Written in (part II)

statements

reasons

- (1) LB = LC
- (2) AB = AC
- 3 DABC is isosceles
- Ogiven
- 2)Thm 4.8
- 3 Defof isosceles a.

