Find each product.

1)
$$4x^2(3x^2+1)$$

$$2) - 9x(x^2 + 2x + 4)$$

Answer:

Answer: _____

3)
$$-6x^2(x^3+7x^2-4x+3)$$

4)
$$x^3(-4x^3+10x^2-7x+2)$$

Answer:

Answer: _____

5)
$$(x+2)(y^2+2y-12)$$

6)
$$(p+q)(4p^2-p-8q^2-q)$$

Answer:

Answer:

Expand each expression.

7)
$$(3x-1)^3$$

8)
$$(x-4)^4$$

Answer:

Answer: _____

		2
07	3(a -	- 1b) ²
71	ыu	4 01

10) $5(x^2-2y^3)^3$

Answer:	Answer:	

11) A biologist has found that the number of branches on a certain rare tree in its first few years of life can be modeled by the polynomial $b(y) = 4y^2 + y$. The number of leaves on each branch can be modeled by the polynomial $l(y) = 2y^3 + 3y^2 + y$, where y is the number of years after the tree reaches a height of 6 feet. Write a polynomial describing the total number of leaves on the tree.